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Critical behavior of the long-range Ising chain from the largest-cluster probability distribution
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Monte Carlo simulations of the one-dimensional Ising model with ferromagnetic interactions decaying with
distancer as 1/r 11s are performed by applying the Swendsen-Wang cluster algorithm with cumulative prob-
abilities. The critical behavior in the nonclassical critical regime corresponding to 0.5,s,1 is derived from
finite-size scaling analysis of the largest cluster.
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The calculation of the critical behavior of the Ising mod
with long-range~LR! interactions decaying with distanc
with a power law 1/r d1s is not an easy task, even in on
dimension, where a phase transition at finite temperature
curs for 0,s<1 @1,2#. Exact analytical expressions for th
critical exponents may be derived fors<0.5 @3#, corre-
sponding to the classical regime, while fors.0.5 only ap-
proximate results exist. Various analytical and numerical
proaches have been applied, from direct numer
calculations on finite chains@4# to several approaches bas
on the renormalization group~RG! and scaling@5–10#. The
nonlocal character of the interactions reduces the efficie
of most of the standard approaches so that the value
critical exponents obtained by all these methods differ c
siderably.

In numerous cases of phase transitions in systems
short-range interactions, a useful complementary tool for
taining both qualitative and quantitative results is provid
by Monte Carlo ~MC! simulations in combination with
finite-size scaling. Such systematic studies were lacking
LR models until recently. When applied to models with L
interactions, the standard MC approaches based either o
Metropolis or on various cluster algorithms are particula
time consuming, since the number of operations per spin
is proportional there to the size of the system. Recently,
problem was successfully resolved by Luijten and Blo¨te @11#
who used the cumulative probabilities within the Wolff clu
ter algorithm@12#, which they applied to the Ising and sim
lar models@13–15#, reducing the computing time by sever
orders of magnitude. Their very exhaustive studies conc
trate on questions related to the mean-field regime, w
very little or no interest has been dedicated yet to the reg
of nonclassical critical behavior corresponding tos.0.5.

The purpose of this work is to extend the MC studies
the critical behavior of the LR Ising model to the nonclas
cal regime. At the same time this is a suitable example
examine the efficiency of using only cluster statistics in d
riving the critical properties of the LR model.

The one-dimensional~1D! Ising model with LR interac-
tions written in the form of a special case (q52) of the Potts
model is described by the Hamiltonian

H52(
i , j

J

u i 2 j u11s
dsi ,sj

, ~1!
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whereJ.0, si is a two-state Potts variable at the sitei, d is
the Kronecker symbol, and the summation is over all pairs
the system. By the substitutiondsi ,sj

5(SiSj11)/2 andJI

5J/2, whereSi561 andJI denote the Ising spins and th
interaction constant, respectively, one recovers the stan
definition of the Ising model. In the mean-field regimes
<0.5 the critical exponents have classical values (n51/s,
h522s). We focus here on the region 0.5,s,1, where
the critical exponents are nontrivial and known only appro
mately.

When the shortcut using cumulative probabilities
implemented in the MC simulations, the full extent of th
numerical advantage is achieved when only the distribut
of spins has to be calculated, while for the energy samp
the reduction in CPU time is less important. Recently t
calculation by energy sampling was improved@16# by calcu-
lating the energy in momentum space and applying a
Fourier transform. Our intent here is to avoid the ener
sampling by making a more complete study of the clus
statistics. For this purpose we use the Swendsen-Wang c
ter algorithm@17#. The implementation of cumulative prob
abilities in the Swendsen-Wang cluster algorithm is straig
forward. Each step of this iterative procedure consists
identifying all the clusters in a given spin configuration
the system, following the rule that two particles belong to t
same cluster with the probabilitypi j 5$12exp@2J(i,j)/
kBT#%dsi ,sj

, and then flipping all the clusters randomly. Th
cumulative probabilities are applied at the point of identif
ing the individual clusters along the same lines as was d
@11# for the Wolf single-cluster algorithm, and this reduc
the number of required operations per single spin flip b
factor of the system size. Like the Wolf algorithm, th
Swendsen-Wang algorithm suppresses the slowing dow
criticality, and, although it might be somewhat more cos
in CPU time, it gives a more complete insight into the clus
statistics and the related probability distributions, such as
distribution of cluster sizes or that of the largest cluster.

Probability distributions related to clusters are mos
used in the description of critical properties of geometri
transitions, like percolation@18#. As follows from the graph
expansion by Kasteleyn and Fortuin@19#, the very basis of
the Swendsen-Wang algorithm, this cluster statistics may
related to the thermodynamic quantities of thermal tran
tions as well. The only important difference is that in perc
©2001 The American Physical Society01-1



in

s
er

e
d

r
en

fe
ui

he
h
th

g-

ex

ic
us
i.e

er

et
io
m
. 1
y

in
a

d
ro
n
o

sing

y

be
ed

ev-

eri-

ts

n-
n-

e

BRIEF REPORTS PHYSICAL REVIEW E 63 037101
lation one deals with simple geometrical clusters, while
thermal transitions the clusters formed by theactive bonds
~in terms of the cluster algorithm! are considered. In system
with LR interactions, such as the present model, this diff
ence is obvious.

The cluster-related distributions have been much less
ploited in the case of thermal transitions, although some
tailed studies exist~see, e.g., Refs.@20,21#! for models with
short-range interactions. More recently, there has been
newed interest in this subject within a somewhat differ
context@22,23#.

By performing 105 MC iterations, which is sufficient for
most of the data presented here, chains of size up to a
tens of thousands of sites could be simulated without req
ing too much numerical effort on a modest workstation.

We limit our analysis here to the size distribution of t
largest cluster, the quantity that remained out of reach wit
the earlier single-cluster approach. The probability that
largest cluster will be of the sizel is defined as

Pmax~ l !5
1

nMCS
Nmax~ l !, ~2!

whereNmax( l ) is the total number of occurrences of the lar
est cluster of sizel during nMCS MC steps~system updates!
of the system.

Several thermodynamic quantities of interest may be
pressed through the corresponding moments defined as

^ l k&5(
l

l kPmax~ l !. ~3!

The first moment

^ l &5(
l

lPmax~ l ! ~4!

gives the mean size of the largest cluster. Below the crit
temperature it describes the order parameter, which is
ally defined as the average of the largest component,
M5(q^max$ma%&21)/(q21), wherema denotes the frac-
tion of spins of the system in the statea.

A quantity of interest to consider is Binder’s fourth-ord
cumulant@24# ratio for the largest cluster,

RL~T!5
^ l 4&

^ l 2&2
, ~5!

defined in the same way as for the standard order param
Differences between the two corresponding distribut
functions, however, result in different shapes of the sa
ratio defined for the two quantities. As may be seen in Fig
the ratioRL(T) at high temperatures and in the thermod
namic limit tends to 1 and not to 3, while the correspond
probability distribution is expected to be non-Gaussian,
found already in the cases of percolation@25# and the short-
range Ising model@21#. However, as in the cases mentione
these differences should not change the basic scaling p
erties in the critical regime. At low temperatures and arou
Tc the behavior of the two ratios coincides. As in the case
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the standard order parameter, there is a common cros
point of the curvesRL(T) of different sizes where the ratio
~5! almost does not depend onL and which can be identified
as the critical temperature. In Fig. 1,RL(T) is shown in the
cases50.9 and for sizes varying from 1000 to 20 000. B
taking into account sizes within the range 1000<L
<20 000, the determination of this crossing point can
made with precision of four digits, which gives an estimat
error of 0.2%.

In Table I are presented the critical temperatures for s
eral values ofs in the nonclassical regime 0.5,s,1 incre-
mented by 0.1, obtained as common crossings ofRL(T). For
comparison, we quote the earlier results obtained by num
cal calculations@4#, the coherent anomaly approach@8,26#,
finite-range scaling~FRS! @9#, and real-space RG@10#. When
quoting Ref.@8# we mention only one of the two given se
of results forTc , which fits better to the later work@26#
performed with a significantly improved precision, but, u
fortunately, available only for two values of the range co
sidered here.

NearTc ~i.e., in the regimeL,j), the moments~3! and
their ratio ~5! should obey finite-size scaling. Thus

RL~T!5Lxf ~L1/nt!, ~6!

where t5(T2Tc)/Tc is the reduced temperature. Sinc
R`(Tc) is finite, x50.

FIG. 1. RatioRL(T) for s50.9 and sizesL varying from 1000
to 20 000.

TABLE I. Comparison of results for the critical temperatureTc

to earlier results by Nagle and Bonner@4#, Monroeet al. @8#, FRS
@9#, Cannas and Magalha˜es @10#, and Monroe@26#. J5kB .

s This work @4# @8# @9# @10# @26#

0.6 1.77060.003 1.766 1.7885 1.7718
0.7 1.46360.003 1.458 1.491 1.4635 1.28 1.466850
0.8 1.215560.002 1.212 1.2585 1.2150
0.9 1.00160.001 1.0015 1.058 1.0027 0.77 1.018845
1-2
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It turns out that the critical exponentn may be estimated
with rather good precision by a simple tuning of the u
known exponent 1/n in Eq. ~6! until the curves collapse in
the vicinity of the crossing point. In Fig. 2 we present t
curves from Fig. 1, collapsed after taking 1/n50.40. The
results forn21 obtained by collapsing fits for other consid
ered values in the interval 0.5,s,1 are given in Table II.

In order to reduce the degree of arbitrariness of such
we require the curves to be indistinguishable in the region
temperatures aroundTc , up to the temperature of the max
mum of RL(T), Tmax. This temperature may be related
the finite-size crossover temperature up to which the fin
size scaling equation~6! should hold. In Fig. 1 one can ob
serve that the maximum ofRL(T) shrinks and shifts toward
Tc with increasingL. A rough fit of the differenceTmax
2Tc to the power-law form (1/L)f gives the values off
that roughly correspond to 1/n for a givens, as expected for
the finite-size crossover exponent@27#. The interval of tuning
in which the curves remain indistinguishable determines
error margins of the values obtained for the exponentn21,
which increase with decreasings but do not exceed 4% in
the considered range ofs ’s.

Alternative calculations of the exponent, e.g., by using
derivatives of moments, turn out to be less advantage
~The purely numerical derivative would require a mu
higher numerical precision and consequently far more ex
sive runs; the derivative obtained by histogram interpolati

FIG. 2. RatioRL(T) for s50.9 versus reduced temperaturet
scaled withL1/n.
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or by mixed moments would require an energy sampling a
an increased numerical precision in addition.! We also men-
tion at this point that the calculations of Binder’s cumula
ratio may equally be performed for the standard order par
eter using the Wolff cluster algorithm. One advantage of
approach that uses the Swendsen-Wang cluster algorith
that it has similar precision and efficiency in both low- a
high-temperature regimes, which improves the scaling fit

The degree of precision of the data obtained permits co
parison to results by other approximate methods. These
sults, which are quite few, are quoted in Table II in chron
logical order and correspond to numerical calculations
finite chains using Pade´ series extrapolations@4#, e expan-
sion near 2s5d @5#, the coherent anomaly method@8#,
finite-range scaling@9#, and real-space RG@10#. In Refs.@4#
and @8# only the numerical data for the exponentsg and b
are available. The exponentn may be expressed in two ways
which, due to the approximate character of the results, do
give identical values.a labels the values obtained from th
scaling relationn5g/(22h) and the exact analytical ex
pressionh522s expected to hold also in the whole non
classical regime.b indicates the values obtained from th
scaling relation involving both exponents,n5g12b. The
quoted results of Ref.@5# are the ones obtained by expansi
in Ds5s20.5 up to the second order. The expansion
(12s) @6# is not quoted in the table. It holds very close
s51 and we may quote only the value fors50.9 which is
equal ton2150.447. The results of Ref.@5# are also ex-
pected to be more reliable closer tos50.5. Other ap-
proaches cover the whole range ofs evenly, but their results
are rather different and their accuracy as well. Our MC
sults agree the best with the FRS results.

In Ref. @10#, which deals with the Potts model with a
arbitrary number of statesq, we found intriguing the conjec-
ture that the exponentn would remain the same for othe
values of q ~when the transition is of the second orde!,
which is in contrast to earlier results of FRS@9#. A MC
approach can thus be used to provide an independent c
lation. ~It also has an advantage over both used approache
that it is able to distinguish a first- from a second-order tra
sition @28,16#.! Our first calculations@29#, performed along
the same lines as above, give for the caseq53, s50.9 the
value 1/n50.4860.01, which would rather be in favor of th
FRS results.

In conclusion, we have applied MC simulations to t
two-state Potts model with LR interactions on chains of up
TABLE II. Results for n21 compared with earlier results of Nagle and Bonner@4#, Fisheret al. @5#,
Monroeet al. @8#, FRS@9#, and Cannas and Magalha˜es@10#. For the meaning of labelsa andb, see the text.

This work @4# @5# @8# @9# @10#

s a b a b

0.6 0.5060.02 0.504 0.540 0.5098 0.441 0.471 0.501
0.7 0.5160.02 0.542 0.552 0.4856 0.478 0.461 0.518 0.376
0.8 0.4760.02 0.533 0.538 0.4461 0.505 0.446 0.483
0.9 0.4060.01 0.529 0.526 0.4032 0.542 0.421 0.405 0.256
1-3
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20 000 sites by using the Swendsen-Wang algorithm to
culate the cluster statistics, in particular the size distribut
of the largest cluster. The approach was used as an alte
tive calculation of the critical behavior in this model in th
nonclassical regime 0.5,s,1. We have shown that th
scaling analysis of Binder’s fourth-order cumulant ratio
the largest-cluster size gives the critical temperature and
critical exponentn with reasonable accuracy~better then
0.2% and 4%, respectively!. Although the overlapping fit is
not expected to be very precise, nor were the simulati
pushed to their extreme, the estimated errors are significa
a

.
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smaller than the differences between the results obtaine
different approaches. The results obtained, presented
Tables I and II, are closest to the values obtained earlier
FRS. While the present work deals only with Binder
fourth-order cumulant ratio, a wider analysis, which includ
other quantities that may be derived from the cluster sta
tics, should be performed in future. We believe that the
proach through cluster statistics might be useful to stu
other cases of the Potts model and other models with disc
symmetries, where in the case of LR interactions the alter
tive methods are very restricted.
ppl.
a

t.
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