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Critical behavior of the long-range Ising chain from the largest-cluster probability distribution
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Monte Carlo simulations of the one-dimensional Ising model with ferromagnetic interactions decaying with
distancer as 1f** are performed by applying the Swendsen-Wang cluster algorithm with cumulative prob-
abilities. The critical behavior in the nonclassical critical regime corresponding to®s51 is derived from
finite-size scaling analysis of the largest cluster.
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The calculation of the critical behavior of the Ising model whereJ>0, s; is a two-state Potts variable at the dité is
with long-range(LR) interactions decaying with distance the Kronecker symbol, and the summation is over all pairs of
V\{ith a power law 97 is not an easy .ta.sk, even in one the system. By the substitutioﬁsi ’sz(SiSj—i—l)/Z andJ,
dimension, where a phase transmon at finite temperature 0= j/0. whereS = +1 andJ, denote the Ising spins and the
curs for 0<o=<1 [1,2). Exact anelyncal expressions for the interaction constant, respectively, one recovers the standard
crltlcal' exponents may be denved f@rﬁO.S [3]. corre- definition of the Ising model. In the mean-field regime
spon_dlng to the clas_S|caI regime, Wh'l.e fat-0.5 only aP-  <0.5 the critical exponents have classical values (/o
proximate results exist. Various analytical and numerical ap- :
proaches have been applied, from direct numericaf!~ 2 @): We focus here on the region &4 <1, where
calculations on finite chaing] to several approaches based the critical exponents are nontrivial and known only approxi-
on the renormalization groufRG) and scaling5—10). The ~ Mately. , _ o
nonlocal character of the interactions reduces the efficiency When the shortcut using cumulative probabilities is
of most of the standard approaches so that the values ¢fPlemented in the MC simulations, the full extent of the
critical exponents obtained by all these methods differ conhumerical advantage is achieved when only the distribution
siderably. of spins has to be calculated, while for the energy sampling

In numerous cases of phase transitions in systems witfhe reduction in CPU time is less important. Recently the
short-range interactions, a useful complementary tool for obcalculation by energy sampling was improvéd] by calcu-
taining both qualitative and quantitative results is providedating the energy in momentum space and applying a fast
by Monte Carlo (MC) simulations in combination with Fourier transform. Our intent here is to avoid the energy
finite-size scaling. Such systematic studies were lacking fosampling by making a more complete study of the cluster
LR models until recently. When applied to models with LR statistics. For this purpose we use the Swendsen-Wang clus-
interactions, the standard MC approaches based either on tker algorithm[17]. The implementation of cumulative prob-
Metropolis or on various cluster algorithms are particularlyabilities in the Swendsen-Wang cluster algorithm is straight-
time consuming, since the number of operations per spin fliforward. Each step of this iterative procedure consists in
is proportional there to the size of the system. Recently, thigdentifying all the clusters in a given spin configuration of
problem was successfully resolved by Luijten andtB[d1]  the system, following the rule that two particles belong to the
who used the cumulative probabilities within the Wolff clus- same cluster with the probability;; ={1—exg—J(i,j)/
ter algorithm[12], which they applied to the Ising and simi- kBT]}5SI 5 and then flipping all the clusters randomly. The
lar models[13-18, reducing the computing time by several cumulative probabilities are applied at the point of identify-
orders of magnitude. Their very exhaustive studies concering the individual clusters along the same lines as was done
trate on questions related to the mean-field regime, whilg11] for the Wolf single-cluster algorithm, and this reduces
very little or no interest has been dedicated yet to the regiméne number of required operations per single spin flip by a
of nonclassical critical behavior correspondingeto- 0.5. factor of the system size. Like the Wolf algorithm, the

The purpose of this work is to extend the MC studies ofSwendsen-Wang algorithm suppresses the slowing down at
the critical behavior of the LR Ising model to the nonclassi-criticality, and, although it might be somewhat more costly
cal regime. At the same time this is a suitable example tan CPU time, it gives a more complete insight into the cluster
examine the efficiency of using only cluster statistics in de-statistics and the related probability distributions, such as the

riving the critical properties of the LR model. distribution of cluster sizes or that of the largest cluster.
The one-dimensionallD) Ising model with LR interac- Probability distributions related to clusters are mostly

tions written in the form of a special casg=t 2) of the Potts  used in the description of critical properties of geometrical

model is described by the Hamiltonian transitions, like percolatiof18]. As follows from the graph

expansion by Kasteleyn and FortJih9], the very basis of
3 the Swendsen-Wang algorithm, this cluster statistics may be
H=—> ———— & s, (1) related to the thermodynamic quantities of thermal transi-
i<y i—j|tte tions as well. The only important difference is that in perco-
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lation one deals with simple geometrical clusters, while in . 1000
thermal transitions the clusters formed by thetive bonds .+ Lz 2000 **,{‘/iyr‘v}x L AN
(in terms of the cluster algorithnare considered. In systems +~ L=3000 f,’ R ‘\:\ Tael
with LR interactions, such as the present model, this differ- T IR Y T e
ence is obvious. Gl B R e I N -3
The cluster-related distributions have been much less ex il SN NN, e
ploited in the case of thermal transitions, although some de-__ :4* o, *\**\ Tl S
tailed studies existsee, e.g., Ref$20,21]) for models with '::, HE W, e T
short-range interactions. More recently, there has been retc %*‘, N
newed interest in this subject within a somewhat different  1-3 j el T
context[22,23. o Tl
By performing 16 MC iterations, which is sufficient for ‘i ;
most of the data presented here, chains of size up to a fev f
tens of thousands of sites could be simulated without requir- /_g{%}*
ing too much numerical effort on a modest workstation. 1.0 g-¥==
We limit our analysis here to the size distribution of the 09 y 11 12 13
ks TA

largest cluster, the quantity that remained out of reach within
the earlier single-cluster approach. The probability that the
FIG. 1. RatioR (T) for ¢=0.9 and size& varying from 1000

largest cluster will be of the siZeis defined as
to 20 000.

1
Pmax(1)= nMCSNma*(l)’ (2) the standard order parameter, there is a common crossing
point of the curveR| (T) of different sizes where the ratio

whereNp,(1) is the total number of occurrences of the larg- (5) almost does not depend dnand which can be identified
as the critical temperature. In Fig. B, (T) is shown in the

est cluster of sizé during nycs MC steps(system updates
caseo=0.9 and for sizes varying from 1000 to 20 000. By

of the system.
Several thermodynamic quantities of interest may be extaking into account sizes within the range 1800
<20000, the determination of this crossing point can be

pressed through the corresponding moments defined as
made with precision of four digits, which gives an estimated
Ky — k error of 0.2%.
{5 Z Pmadl)- ® In Table | are presented the critical temperatures for sev-
, eral values ofr in the nonclassical regime G5r<<1 incre-
The first moment mented by 0.1, obtained as common crossing®,¢f). For
comparison, we quote the earlier results obtained by numeri-
<I)=2 IPmaxD) (4) cal calculationd4], the coherent anomaly approai®)26],
! finite-range scalingFRS [9], and real-space R{Z0]. When
gives the mean size of the largest cluster. Below the criticaf!otng Ref.[8] we mention only one of the two given sets
temperature it describes the order parameter, which is us f results for.TC’ vv'h|c.h_ fits bgtter to the Iat(.er. worf26]
ally defined as the average of the largest component, i_eperformed with a significantly improved precision, but, un-
M= (q(max{m,})— 1)/(q— 1), wherem, denotes the frac- f(_)rtunately, available only for two values of the range con-
tion of spins of the system in the staie sidered her(_a. : :
A quantity of interest to consider is Binder’s fourth-order Near_Tc (ie., in the reg'm§‘<§)’ the moments{S) and
their ratio (5) should obey finite-size scaling. Thus

cumulant[24] ratio for the largest cluster,
RU(T)=L*f (LY 7), (6)

(1
R(T) =5, 5

(% where 7=(T—T.)/T. is the reduced temperature. Since
defined in the same way as for the standard order parametd?=(Tc) is finite, x=0.
Differences between the two_corresponding distribution TABLE |. Comparison of results for the critical temperatdr,
functions, however, result in different shapes of the sam?0 carlier re.sults bp Nagle and Bonr{@i, Monroeet al [%] FRS@
ratio defined for the two quantities. As may be seen in Fig. 1[9] Cannas and Myagélga[lo] and Mor,1roe[26] J:k. '
the ratioR_(T) at high temperatures and in the thermody-_"" ' ' B
namic limit tends to 1 and not to 3, while the corresponding This work [4] 8] [o] [10] [26]
probability distribution is expected to be non-Gaussian, as
found already in the cases of percolati@5] and the short- 0.6 1.77G-:0.003 1.766 1.7885 1.7718
range Ising moddl21]. However, as in the cases mentioned,0.7 1.463-0.003 1.458 1.491 1.4635 1.28 1.466850
these differences should not change the basic scaling prop-8 1.2155-0.002 1.212 1.2585 1.2150
erties in the critical regime. At low temperatures and around.9 1.00#0.001 1.0015 1.058 1.0027 0.77 1.018845
T. the behavior of the two ratios coincides. As in the case ot
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' ' or by mixed moments would require an energy sampling and
* L= 1000 gl ; an increased numerical precision in additjoiWe also men-
g ses 5."* Y tion at this point that the calculations of Binder's cumulant
0p: +L=5000 ¢ "“"u; . ratio may equally be performed for the standard order param-
' + L=10000 F * e, eter using the Wolff cluster algorithm. One advantage of the
* L=20000 ; i approach that uses the Swendsen-Wang cluster algorithm is
- ¥ that it has similar precision and efficiency in both low- and
e ] i high-temperature regimes, which improves the scaling fit.
15 ¢ ! The degree of precision of the data obtained permits com-
P parison to results by other approximate methods. These re-
Py sults, which are quite few, are quoted in Table Il in chrono-
K4 logical order and correspond to numerical calculations on
prad finite chains using Padseries extrapolationgt], e expan-
108 =~ sion near &=d [5], the coherent anomaly methd@],
'y 0 Y 0o 03 finite-range scaling9], and real-space R@EO0]. In Refs.[4]

L% and[8] only the numerical data for the exponentsand 8
are available. The exponentmay be expressed in two ways,
FIG. 2. RatioR (T) for 0=0.9 versus reduced temperature \yhich, due to the approximate character of the results, do not
scaled withL.*". give identical valuesa labels the values obtained from the
scaling relationv=vy/(2—#n) and the exact analytical ex-
pressionn=2— o expected to hold also in the whole non-
classical regimeb indicates the values obtained from the
scaling relation involving both exponents=vy+28. The
quoted results of Ref5] are the ones obtained by expansion

results forv~! obtained by collapsing fits for other consid- n AU_U_.OB up to the_ second order. The expansion in
ered values in the interval 05o0<1 are given in Table II. (1~0) [6] is not quoted in the table. It holds very _clos_e to
In order to reduce the degree of arbitrariness of such fitg = 1 and we may quote only the value for=0.9 which is
we require the curves to be indistinguishable in the region ofdual tov™==0.447. The results of Ref5] are also ex-
temperatures arouril,, up to the temperature of the maxi- Pected to be more reliable closer w=0.5. Other ap-
mum of R_(T), Tmax. This temperature may be related to proaches cover the whole rangemgvenly, but their results
the finite-size crossover temperature up to which the finiteare rather different and their accuracy as well. Our MC re-
size scaling equatiofs) should hold. In Fig. 1 one can ob- sults agree the best with the FRS results.
serve that the maximum &, (T) shrinks and shifts toward ~ In Ref. [10], which deals with the Potts model with an
T. with increasingL. A rough fit of the differenceT,,,,  arbitrary number of stateg we found intriguing the conjec-
—T, to the power-law form (1/)? gives the values ofp  ture that the exponent would remain the same for other
that roughly correspond to iLfor a giveno, as expected for values ofq (when the transition is of the second orger
the finite-size crossover expong@f]. The interval of tuning  which is in contrast to earlier results of FHS]. A MC
in which the curves remain indistinguishable determines thapproach can thus be used to provide an independent calcu-

It turns out that the critical exponemtmay be estimated
with rather good precision by a simple tuning of the un-
known exponent 1/ in Eq. (6) until the curves collapse in
the vicinity of the crossing point. In Fig. 2 we present the
curves from Fig. 1, collapsed after takingv##0.40. The

error margins of the values obtained for the exponent, lation. (It also has an advantage over both used approaches in
which increase with decreasing but do not exceed 4% in that it is able to distinguish a first- from a second-order tran-
the considered range of's. sition [28,16].) Our first calculationg29], performed along

Alternative calculations of the exponent, e.g., by using thehe same lines as above, give for the cgse3, 0=0.9 the
derivatives of moments, turn out to be less advantageousalue 1#=0.48+0.01, which would rather be in favor of the
(The purely numerical derivative would require a muchFRS results.
higher numerical precision and consequently far more exten- In conclusion, we have applied MC simulations to the
sive runs; the derivative obtained by histogram interpolationgwo-state Potts model with LR interactions on chains of up to

TABLE |l. Results for v~ ! compared with earlier results of Nagle and Bonfé};, Fisheret al. [5],
Monroeet al.[8], FRS[9], and Cannas and Magaks{10]. For the meaning of labels andb, see the text.

This work [4] [5] [8] [9] [10]
o a b a b
0.6 0.50+0.02 0.504 0.540 0.5098 0.441 0.471 0.501
0.7 0.51-0.02 0.542 0.552 0.4856 0.478 0.461 0.518 0.376
0.8 0.47#0.02 0.533 0.538 0.4461 0.505 0.446 0.483
0.9 0.4G:£0.01 0.529 0.526 0.4032 0.542 0.421 0.405 0.256
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20000 sites by using the Swendsen-Wang algorithm to calsmaller than the differences between the results obtained by
culate the cluster statistics, in particular the size distributiordifferent approaches. The results obtained, presented in
of the largest cluster. The approach was used as an altern@ables | and I, are closest to the values obtained earlier by
tive calculation of the critical behavior in this model in the FRS. While the present work deals only with Binder's
nonclassical regime 050<1. We have shown that the fourth-order cumulant ratio, a wider analysis, which includes
scaling analysis of Binder’'s fourth-order cumulant ratio of other quantities that may be derived from the cluster statis-
the largest-cluster size gives the critical temperature and thiics, should be performed in future. We believe that the ap-
critical exponentr with reasonable accuracgpbetter then proach through cluster statistics might be useful to study
0.2% and 4%, respectivelyAlthough the overlapping fit is other cases of the Potts model and other models with discrete
not expected to be very precise, nor were the simulationsymmetries, where in the case of LR interactions the alterna-

pushed to their extreme, the estimated errors are significantijve methods are very restricted.
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